Respuesta :
Answer:
It is given that the label on the car's antifreeze containers claims to protect the car between [tex]-30^{\circ} C[/tex] and [tex]130^{\circ} C[/tex].
Convert Celsius temperature to Fahrenheit temperature;
Using the formula:
[tex]C = \frac{5}{9}(F-32)[/tex]
Multiply both sides by [tex]\frac{9}{5}[/tex] we get;
[tex]\frac{9}{5}C =\frac{5}{9}(F-32) \times \frac{9}{5}[/tex]
Simplify:
[tex]\frac{9}{5}C = F-32[/tex]
Add 32 to both sides of an equation:
[tex]\frac{9}{5}C +32= F-32+32[/tex]
Simplify:
[tex]\frac{9}{5}C +32= F[/tex] ......[1]
Substitute the value [tex]-30^{\circ} C[/tex] in [1];
[tex]F = \frac{9}{5} \cdot (-30^{\circ} ) +32[/tex]
or
[tex]F= 9 \cdot (-6)+32 =-54+32 = -22 ^{\circ}[/tex]
Similarly, Substitute the value [tex]130^{\circ} C[/tex] in [1] we have;
[tex]F = \frac{9}{5} \cdot (130^{\circ} ) +32[/tex]
or
[tex]F= 9 \cdot (26)+32 =234+32 = 266 ^{\circ}[/tex]
then, we have [tex]-22^{\circ}<F<266^{\circ}[/tex]
Therefore, the inequality [tex]-30<\frac{5}{9}(F-32) < 130[/tex] that determine the Fahrenheit temperature range at which this antifreeze protects the car is; [tex]-22<F<266[/tex]