I can't figure out how to solve this: sec^2x-1/sec^2

I am very rusty on my fraction skills, can anyone recommend a video I can watch that explains how to solve fractions?

Respuesta :

Answer: sin²θ

Explanation:

First, convert sec into [tex]\frac{1}{cos}[/tex], then use identity (cos²θ + sin²θ = 1) and simplify:

  [tex]\frac{sec^{2}\theta - 1}{sec^{2}\theta}[/tex]

= [tex]\frac{sec^{2}\theta - 1}{1}*\frac{1}{sec^{2}\theta}[/tex]

= [tex](\frac{1}{cos^{2}\theta} - 1)*(\frac{sec^{2}\theta}{1})[/tex]

= [tex](\frac{1}{cos^{2}\theta} - \frac{cos^{2}\theta}{cos^{2}\theta})*(\frac{cos^{2}\theta}{1})[/tex]

= [tex](\frac{1 - cos^{2}\theta}{cos^{2}\theta})*(\frac{cos^{2}\theta}{1})[/tex]

= [tex](\frac{sin^{2}\theta}{cos^{2}\theta})*(\frac{cos^{2}\theta}{1})[/tex]

= [tex]\frac{sin^{2}\theta*cos^{2}\theta}{cos^{2}\theta}[/tex]

= sin²θ