Respuesta :

Riia

The equation of hyperbola is

[tex]\frac{(x-h)^2}{a^2}- \frac{(y-k)^2}{b^2}=1[/tex]

Where center is (h,k)

Vertex is(h+a,k)

SO if we compare the vertex with the vertex formula, we will get

[tex]h+a=9, k=0[/tex]

And formula of focus is (h+c,k)

On comparing we will get

[tex]h+c=41[/tex]

So we have h =0 , k=0, a=9, c=41

[tex]b^2=c^2-a^2\\b^2=41^2-9^2\\b^2=1600[/tex]

So the equation is

[tex]\frac{x^2}{81}-\frac{y^2}{1600}=1[/tex]

Answer:

a on edge

Step-by-step explanation:

just bc it is