Assume the normal distribution applies to a scenario where you are given H1: p ≠ 0.6 in a test using a significance level of α = 0.005. Find the critical z value(s).


z = –1.55


z = ±2.81


z = ±1.75


z = ±2.575

Respuesta :

Solution: The null and alternative hypotheses are:

[tex]H_{0}: p=0.6[/tex]

[tex]H_{1}=p\neq 0.6[/tex]

We have to find the two tailed critical z values.

We can find the critical z values at [tex]\alpha=0.005[/tex] using the standard normal table.

Now using the standard normal table, we have:

[tex]z=\pm2.575[/tex]

Therefore, the option [tex]z=\pm 2.575[/tex] is correct

Answer:

Correct answer is 2.81, not 2.575

Step-by-step explanation: