Respuesta :


[tex]288\pi[/tex]
It equals 904.78 all together. if you were to take 904.78 and divide it by 3.14 you'd get 288

The correct answer is:   [B]:   " 288 [tex]\pi[/tex]  units³ " .

__________________________________________________

Explanation:

__________________________________________________

The formula for the volume, "V" , of a sphere is:

____________________________________________________  

      →   V  =  [tex]\frac{4}{3}  *  \pi  *  r^{3}[/tex]  ;

____________________________________________________

            in which:  

____________________________________________________

          V = volume (in "units³ " ; or, write as "cubic units" ).

             in our case, we our not given specific units; but simply "units" ;

             as such, the volume is expressed as:  "units³ " ;  or "cubic units".

Note:  When calculating the volume of a solid:

   I   f not given ANY type of units — {or even given the word "units" / for the type of units /  as in this particular question/problem} — as the type of units ;

          →  then, we express the "volume" of a solid — in:

                           "cubic units" ;  or,  " units³ " .  

_____________________________________________________

So:  The volume, "V" ; for a "sphere" ; can be calculated using the formula:

____________________________________________________

    →   V  =  [tex]\frac{4}{3}  *  \pi  *  r^{3}[/tex]   ;

____________________________________________________

in which:  

    →   V = volume {of the "sphere" ; in:  ["units³ "] ; as aforementioned;  

    →   [tex]\pi[/tex]  ≈  3.14  ;

{ Note:  For our purposes, we shall use the number; " 3.14 " ;  as an      approximation for " [tex]\pi[/tex] " .}.

   →   r  =  "radius"  = " 6 units " ;    ←  (given) ;

____________________________________________________

So, let us plug in these values into the formula;

    →  to solve for the volume, "V" ;  of the sphere:

____________________________________________________

  →  V = [tex]\frac{4}{3}[/tex] * [tex]\pi[/tex] * r³   ;

____________________________________________________

    →  V  = [tex]\frac{4}{3} * [tex]\pi[/tex] * (6 units)³  ;

____________________________________________________

Note:    (6 units)³  =  6³  *  (units)³   ;  

→   {since:  " (ab)ⁿ  =  aⁿ bⁿ  ".}.  .  

                  →   6³   *  (units)³   =  ??  "  ;

                              =   6³  =  6 * 6 * 6  = 36 * 6  = 216 .

                             (or:  Use calculator:  " 6³ = 216 " .).

                  →  6³  * (units)³ =  216 units³ .

____________________________________________________

So:    V  =  [tex]\frac{4}{3}[/tex]  * 3.14  *  (216 units³)  =  _?_  units³  ?? ;

____________________________________________________

    →  V   =  [ [tex](\frac{4}{3}) * (3.14) * (216)[/tex] ]  units³  ;

              =  904.3200000000000072  units³  .  (used calculator).

____________________________________________________

         Now, upon examining the 4 (four) answer choices provided, we notice that "none" of them give this very [directly aforementioned] answer.  

        Furthermore, upon examining examining the 4 (four) answer choices provided, we notice that EACH answer choice does, in fact, list an answer with units of:  " units³ " .

       However, note that for EACH of the 4 (four) answer choices provided, we notice that ALL of the "answer choices" provided;  for the "volume" of the "sphere"  are given in terms of:  " [tex]\pi[/tex] " .

      So, if we take our calculated answer for the "volume" of the "sphere", which, as aforementioned, is:

____________________________________________________

         →    V  =  " 904.3200000000000072  units³ "  .

____________________________________________________

→  AND:  We divide  that   numeric value by "[tex]\pi[/tex]" ;

     →  {that is:  divide that numeric value by the approximation

           for:  " [tex]\pi[/tex] " ;  

                   →   that is; divide that numeric value by:  " 3.14 " ;  

     →   We can find a "coefficient" of sorts, to:

              " [tex]\pi[/tex] " ;

     →   when " [tex]\pi[/tex] " ; is written as a symbol .

____________________________________________________

If this number is very close to one of the 4 (four) answer choices provided;  

  →  that is, close to the "coefficient" of:  " [tex]\pi[/tex] " ;

              →  when " [tex]\pi[/tex] " ;  is written as a symbol ;

_____________________________________________________

→  Then this should reflect the correct answer choice.

_____________________________________________________

Now, let us calculate; as follows:

_____________________________________________________

  →   " 904.3200000000000072 " ;  

               ÷   " 3.14 "

_____________________________________________________

to get:  

   =   "  288.000000000000002293 "   ;

____________________________________________________

 →  which corresponds to:

____________________________________________________

→  Answer choice:  [B]:    " 288 [tex]\pi[/tex]  units³ " .

____________________________________________________

Source used:   "Web 2.0 scientific calculator."  Online Scientific Calculator.  2018. Web. Date accessed/used:  14 Nov 2018 .

____________________________________________________