Respuesta :
Answer:
(-∞ 2] ∪ [-4/3 ∞ )
Step-by-step explanation:
Given compound inequality,
[tex]-9x+5\leq 17\text{ or }13x+25\leq -1[/tex]
[tex]-9x\leq 12\text{ or }13x\leq -26[/tex] ( Subtraction property of inequality )
[tex]-x\leq \frac{12}{9}\text{ or }x\leq -\frac{26}{13}[/tex] ( Division property of inequality )
[tex]-x\leq \frac{4}{3}\text{ or }x\leq -2[/tex]
[tex]x\geq -\frac{4}{3}\text{ or }x\leq -2[/tex] ( a < b ⇒ - a > - b )
Hence, the solution of the given inequality is,
(-∞ -2] ∪ [-4/3 ∞ )
Answer:
[tex](-\infty,-2] \cup [\displaystyle\frac{-4}{3},-\infty)[/tex]
Step-by-step explanation:
We are given the following information in the question:
We have to solve the given inequalities for x:
Inequality 1
[tex]-9x+5 \leq 17\\-9x \leq 17-5\\-9x \leq 12\\\\x \leq \displaystyle\frac{12}{-9}\\\\x \geq \frac{-4}{3}\\\\x \in [\frac{-4}{3},-\infty)[/tex]
Inequality 2
[tex]13x + 25 \leq -1\\13x \leq -1-25\\13x \leq -26\\\\x \leq \displaystyle\frac{-26}{13}\\\\x \leq -2\\x \in (-\infty,-2][/tex]
The combined solution for both the inequalities is given by:
[tex](-\infty,-2] \cup [\displaystyle\frac{-4}{3},-\infty)[/tex]