Find the vertex of the parabola?

The vertex of the parabola [tex]y=ax^2+bx+c[/tex] has coordinates
[tex]x_v=-\dfrac{b}{2a}[/tex]
and
[tex]y_v=ax_v^2+bx_v+c.[/tex]
In your case, for the parabola [tex]y=x^2-4x+6[/tex] the vertex has coordinates
[tex]x_v=-\dfrac{-4}{2\cdot1}=2[/tex]
and
[tex]y_v=2^2-4\cdot 2+6=4-8+6=2.[/tex]
Therefore, point (2,2) is the vertex of the parabola.
Answer: correct choice is B