Respuesta :

sin theta = 4/7

theta = arcsin (4/7)

cos (arcsin (4/7)

if theta is in the second quadrant cos theta is negative (calculators only give the postive answer)

cos (arcsin (4/7)= - sqrt(33)/7

Choice B

Answer:

cosθ = - [tex]\frac{\sqrt{33}}{7}[/tex].

Step-by-step explanation:

Given  : sinθ=[tex]\frac{4}{7}[/tex].

To find : What is the exact value of cosθ in simplified  form .

Solution : We have given sinθ=[tex]\frac{4}{7}[/tex].

By the trigonometric identity : [tex](sin)^{2} +(cos)^{2}  = 1[/tex].

Plug the value of sinθ=[tex]\frac{4}{7}[/tex].

[tex](\frac{4}{7}) ^{2} + cos^{2} = 1[/tex].

[tex](\frac{16}{49}) + cos^{2} = 1[/tex].

Subtracting [tex]\frac{16}{49}[/tex]  from both sides

[tex]cos^{2} = 1 - \frac{16}{49}[/tex].

[tex]cos^{2} = \frac{49 -16}{49}[/tex].

[tex]cos^{2} = \frac{33}{49}[/tex].

Taking square root both sides

[tex]cos ( theta) = \sqrt{\frac{33}{49} }[/tex].

cosθ = ± [tex]\frac{\sqrt{33}}{7}[/tex].

θ lies in Quadrant II so,  cosθ = - [tex]\frac{\sqrt{33}}{7}[/tex].

Therefore, cosθ = - [tex]\frac{\sqrt{33}}{7}[/tex].