Which equation should be used to calculate S9 for the arithmetic sequence an=3n-1

o S9=9/2(2+26)
o S9= 9/2(4+17)
o S9=9/4(2+26)
o S9=9/4(4+26)

Respuesta :

Answer:

Option A is correct.

The equation = [tex]S_9 =\frac{9}{2} (2+26)[/tex].

Explanation:

Sum of the terms of an arithmetic series is given by

[tex]S_n = \frac{n(a_1+a_n)}{2}[/tex],                  ......[1]

where n is the number of terms, [tex]a_1[/tex] is the first term and  [tex]a_n[/tex]is the last term.

Given the formula for nth term in the arithmetic sequence is, [tex]a_n = 3n-1[/tex]

for n =1

[tex]a_1 = 3 \cdot 1 -1 = 3-1 =2[/tex]

for n =9

[tex]a_9= 3 \cdot 9 -1 = 27-1 =26[/tex]

Then, put these values in equation [1] for n =9;

[tex]S_9 = \frac{9 \cdot (a_1+a_9)}{2} = \frac{9(2+26)}{2}[/tex] or

[tex]S_9 =\frac{9}{2} (2+26)[/tex]

Therefore, the equation is; [tex]S_9 =\frac{9}{2} (2+26)[/tex]




Answer:

1. D

2. A

3. C

4. D

5. A

Step-by-step explanation: