Respuesta :

f(g(x)) means that you plug in the function of g(x) into x.

It is like plugging in a number for x

f(1) = 3(1) - 2 / 2(1)

But instead of a number, you plug in the function of g(x)

[tex]f(x) = \frac{3x-2}{2x}[/tex]

[tex]f(g(x)) = \frac{3(g(x)) - 2}{2(g(x))}[/tex]

Since you know g(x) = 4x - 1, you replace g(x) with 4x - 1

[tex]f(g(x)) = \frac{3(4x-1)-2}{2(4x-1)}[/tex]

[tex]f(g(x))=\frac{12x-3-2}{8x-2}  = \frac{12x - 5}{8x-2}[/tex]

The value of the composite function f(g(x)) is [tex]f(g(x)) = \frac{12x - 5}{2x}[/tex]

How to determine the composite function?

We have:

[tex]f(x) = \frac{3x - 2}{2x}[/tex]

g(x) = 4x - 1

We have:

[tex]f(x) = \frac{3x - 2}{2x}[/tex]

Substitute g(x) for x

[tex]f(g(x)) = \frac{3g(x) - 2}{2x}[/tex]

Substitute g(x) = 4x - 1

[tex]f(g(x)) = \frac{3(4x - 1) - 2}{2x}[/tex]

Expand

[tex]f(g(x)) = \frac{12x - 3 - 2}{2x}[/tex]

Evaluate the like terms

[tex]f(g(x)) = \frac{12x - 5}{2x}[/tex]

Hence, the value of f(g(x)) is [tex]f(g(x)) = \frac{12x - 5}{2x}[/tex]

Read more about composite functions at:

https://brainly.com/question/10687170

#SPJ9