Respuesta :

Answer: [tex]\frac{11}{6}[/tex]

Step-by-step explanation:

30°-60°-90° triangle has corresponding sides of: b - b√3 - 2b

sec² [tex](\frac{\pi}{3})[/tex] = sec² 60°

sec² 60° = [tex]\frac{1}{cos^{2}60}[/tex]

             = [tex](\frac{hypotenuse}{adjacent})^{2}[/tex]

             = [tex](\frac{2b}{b\sqrt{3}})^{2}[/tex]

             = [tex](\frac{2}{\sqrt{3}})^{2}[/tex]

             = [tex]\frac{4}{3}[/tex]  

45°-45°-90° triangle has corresponding sides of: a - a - a√2

sin² [tex](\frac{\pi}{4})[/tex] = sin² 45°

             = [tex](\frac{opposite}{hypotenuse})^{2}[/tex]

             = [tex](\frac{a}{a\sqrt{2}})^{2}[/tex]

             = [tex](\frac{1}{\sqrt{2}})^{2}[/tex]

             = [tex]\frac{1}{2}[/tex]  

sec² [tex](\frac{\pi}{3})[/tex]  + sin² [tex](\frac{\pi}{4})[/tex]

= [tex]\frac{4}{3}[/tex]  + [tex]\frac{1}{2}[/tex]

= [tex]\frac{4}{3}(\frac{2}{2})[/tex]  + [tex]\frac{1}{2}(\frac{3}{3})[/tex]

= [tex]\frac{8+3}{6}[/tex]

= [tex]\frac{11}{6}[/tex]

*********************************************************************************

(-12, 5)

  • the x-coordinate is the adjacent side = -12
  • the y-coordinate is the opposite side = 5
  • Use Pythagorean Theorem to find the hypotenuse = 13

(-12)² + (5)² = (hypotenuse)²

144  +  25 = (hypotenuse)²

           169 = (hypotenuse)²

             13 = hypotenuse

sin θ = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{5}{13}[/tex]

cos θ = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]-\frac{12}{13}[/tex]

tan θ = [tex]\frac{opposite}{adjacent}[/tex] = [tex]-\frac{5}{12}[/tex]

csc θ = [tex]\frac{hypotenuse}{opposite}[/tex] = [tex]\frac{13}{5}[/tex]

sec θ = [tex]\frac{hypotenuse}{adjacent}[/tex] = [tex]-\frac{13}{12}[/tex]

cot θ = [tex]\frac{adjacent}{opposite}[/tex] = [tex]-\frac{12}{5}[/tex]