Respuesta :

Answer: π/6

Step-by-step explanation:

sec θ = [tex]\frac{2}{\sqrt{3}}[/tex]

sec = [tex]\frac{1}{cos}[/tex]

⇒ [tex]\frac{1}{cos}[/tex] = [tex]\frac{2}{\sqrt{3}}[/tex]

⇒ cos θ = [tex]\frac{\sqrt{3}}{2}[/tex]

Since it is an acute angle, then 0° > θ > 90°

Look at the Unit Circle to find that cos θ = [tex]\frac{\sqrt{3}}{2}[/tex] at π/6

***********************************************************************

Answer: -300°

Step-by-step explanation:

Set up the proportion:

[tex]\frac{\pi }{180} = \frac{-5\pi} {3x}[/tex]

Cross multiply and solve:

π(3x) = 180(-5π)

   x = [tex]\frac{180(-5\pi)}{3\pi}[/tex]

   x = 60(-5)

   x = -300

Otras preguntas