remember that [tex]\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}[/tex]
also remmber that [tex]\frac{x^a}{x^b}=x^{a-b}[/tex]
also remember [tex]\frac{ab}{cd}=(\frac{a}{c})(\frac{b}{d})[/tex]
therefore
[tex]\frac{-7b^5+42b^4}{7b}=[/tex]
[tex]\frac{-7b^5}{7b}+\frac{42b^4}{7b}=[/tex]
[tex](\frac{-7}{7})(\frac{b^5}{b^1})+(\frac{42}{7})(\frac{b^4}{b^1})=[/tex]
[tex](-1)(b^{5-1})+(6)(b^{4-1})=[/tex]
[tex]-b^4+6b^3[/tex]