Respuesta :

max is at vertex

in form [tex]y=ax^2+bx+c[/tex]

the x value of the vertex is [tex]\frac{-b}{2a}[/tex]

given, [tex]y=6x^2-1[/tex]

a=6, b=0

the x value of the vertex is -0/(2*6)=0

the y value is [tex]y=6(0)^2-1=0-1=-1[/tex]

so vertex is at (0,-1)

since the value of a is positive, the parabola opens up and the vertex is a minimum value of the function

therefore that value is the smallest value the function can be



domain=numbesr you can use for x

range=numbesr you get out of inputting the domain


domain=all real numbers

range is {y | y≥-1} since y=-1 is the minimum

The minimum or maximum, domain and range of the given function is required.

Domain: [tex]x\in (-\infty,\infty)[/tex]

Range: [tex]y\in [-1,\infty)[/tex]

The function is minimum at [tex](0,-1)[/tex]

The given function is [tex]y=6x^2-1[/tex]

The domain consists of the [tex]x[/tex] values for which the function is defined.

The function is defined for all values of [tex]x[/tex] so, the domain is

[tex]x\in (-\infty,\infty)[/tex]

The range is the list of [tex]y[/tex] values for all values of [tex]x[/tex].

The range here is [tex]y\in [-1,\infty)[/tex]

Differentiating with respect to [tex]x[/tex]

[tex]y'=12x[/tex]

Equating to 0

[tex]0=12x\\\Rightarrow x=0[/tex]

Double derivative of the function

[tex]y''=12[/tex]

Since, [tex]y''>0[/tex], it will only have a minimum value.

Substituting [tex]x=0[/tex]

[tex]y=6\times 0-1\\\Rightarrow y=-1[/tex]

The function is minimum at [tex](0,-1)[/tex]

The function does not have a maximum point.

Learn more:

https://brainly.com/question/19851483?referrer=searchResults

https://brainly.com/question/13581879?referrer=searchResults