Respuesta :
First find the gradient of line AB
14--3/7--10
17/17 = 1
As CD is perpendicular to AB take the negative reciprocal of the gradient to AB to find gradient of CD
Gradient of CD = -1
to find y intercept use points given
12=(-1 x 5) +c
17 = c
C is the y intercept so for question 1 the answer is 3
for the second question just plug values into the equation and see if you get the right y value
Here the only number that works is -2
for question 2
the answer is 2
Answer:
First blank (17,0)
Option 3 is correct
Second Blank (-2,19)
Option 2 is correct
Step-by-step explanation:
CD is perpendicular to AB
C(5,12)
A(-10,-3)
B(7,14)
CD ⊥ AB
Thus, Slope of CD is negative inverse of slope of AB
[tex]\text{Slope of AB }=\dfrac{14+3}{7+10}[/tex]
[tex]m=1[/tex]
Slope of CD, m=-1 (CD ⊥ AB )
Point C: (5,12)
Equation of line CD,
[tex]y-12=-1(x-5)[/tex]
[tex]y=-x+17[/tex]
For x-intercept: Put y=0
[tex]0=-x+17[/tex]
[tex]x=17[/tex]
x-intercept: (17,0)
For second blank we have to check each point.
Option 1: (-5,24) ,Put x=-5 and y=24
[tex]24=5+17[/tex]
[tex]24\neq 22[/tex]
False
Option 2: (-2,19) ,Put x=-2 and y=19
[tex]19=2+17[/tex]
[tex]19=19[/tex]
True
Option 3: (7,-10) ,Put x=7 and y=-10
[tex]-10=-7+17[/tex]
[tex]-10\neq 10[/tex]
False
Option 4: (8,11) ,Put x=8 and y=11
[tex]11=-8+17[/tex]
[tex]11\neq 9[/tex]
False
Hence, First blank (17,0) and Second blank (-2,19)