Respuesta :

i can not answer the four questions for you but i can give you an example of how to solve it

The inequality

|x|<2

Represents the distance between x and 0 that is less than 2

Whereas the inequality

|x|>2

Represents the distance between x and 0 that is greater than 2

You can write an absolute value inequality as a compound inequality.

$\left | x \right |<2\: or−2<x<2

This holds true for all absolute value inequalities

|ax+b|<c,wherec>0=−c<ax+b<c

|ax+b|>c,wherec>0=ax+b<−corax+b>c

You can replace > above with ≥ and < with ≤.

When solving an absolute value inequality it's necessary to first isolate the absolute value expression on one side of the inequality before solving the inequality.



Ver imagen bradhuh543
Ver imagen bradhuh543