Respuesta :

Based on the ideal gas relation:

PV = nRT

where P = pressure ; V = volume ; T = temperature

n = number of moles; R = gas constant = 0.0821 L atm/mol-K

Step 1: Find the number of moles of O2

n = PV/RT = 1 * 3.90/0.0821*273 = 0.1740 moles

Step 2: Calculate the molecules of O2

Now, 1 mole of O2 corresponds to 6.023 * 10²³ molecules of O2

Therefore, 0.1740 moles of O2 corresponds to-

0.1740 moles of O2 * 6.023*10²³ molecules of O2/1 mole of O2

= 1.048 * 10²³ molecules of O2

Hello!

How many molecules of O2 are present in a 3.90L flask at a temperature of 273K and a pressure of 1.00atm?

We have the following data:

V (volume) = 3.90 L

n (number of mols) = ?

T (temperature) = 273 K

P (pressure) = 1 atm

R (gas constant) = 0.082 atm.L / mol.K

We apply the data above to the Clapeyron equation (gas equation), let's see:

[tex]P*V = n*R*T[/tex]

[tex]1*3.90 = n*0.082*273[/tex]

[tex]3.90 = 22.386\:n[/tex]

[tex]22.386\:n = 3.90[/tex]

[tex]n = \dfrac{3.90}{22.386}[/tex]

[tex]\boxed{n \approx 0.174\:mol}[/tex]

Now, knowing that by Avogadro's Law for each mole of a substance we have 6.022 * 10²³ molecules, how many molecules of O2 are present ?

1 mol -------------------- 6.022*10²³ molecules

0.174 mol ---------------- y molecules

[tex]\dfrac{1}{0.174} = \dfrac{6.022*10^{23}}{y}[/tex]

multiply the means by the extremes

[tex]1*y = 0.174*6.022*10^{23}[/tex]

[tex]y = 1.047828*10^{23} \to \boxed{\boxed{y \approx 1.048*10^{23}\:molecules\:of\:O_2}}\end{array}}\end{array}}\qquad\checkmark[/tex]

_______________________

I Hope this helps, greetings ... Dexteright02! =)