Respuesta :

Answer: 2a -5 + h

Step-by-step explanation:

f(x) = x² - 5x

f(a + h) = (a + h)² - 5(a + h)

            = a² + 2ah + h² - 5a - 5h

f(a) = a² - 5a

f(a + h) - f(a) = a² + 2ah + h² - 5a - 5h - (a² - 5a)

                    = a² + 2ah + h² - 5a - 5h - a² + 5a

                     = 2ah - 5h + h²

[tex]\frac{f(a + h) - f(a)}{h} = \frac{2ah - 5h + h^{2}}{h}[/tex] = 2a - 5 + h


this looks suspiciously like the difference quotient

anyway

evaluate each then put them together

[tex]f(a+h)=(a+h)^2-5(a+h)[/tex]

[tex]f(a+h)=a^2+2ah+h^2-5a-5h[/tex]

[tex]f(a+h)=a^2+2ah-5a-5h+h^2[/tex]


[tex]f(a)=a^2-5a[/tex]


so [tex]\frac{f(a+h)-f(a)}{h}=[/tex]

[tex]\frac{a^2+2ah-5a-5h+h^2-(a^2-5a)}{h}=[/tex]

[tex]\frac{a^2+2ah-5a-5h+h^2-a^2+5a}{h}=[/tex]

[tex]\frac{2ah-5h+h^2}{h}=[/tex]

[tex]2a-5+h[/tex]