Respuesta :

the equation of a parabola in

vertex form

is.


¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

2

2

y

=

a

(

x

h

)

2

+

k

2

2

−−−−−−−−−−−−−−−−−−−−−


where

(

h

,

k

)

are the coordinates of the vertex and a


is a multiplier


to obtain this form

complete the square


y

=

x

2

+

2

(

4

)

x

+

16

16

+

14


y

=

(

x

+

4

)

2

2

in vertex form


vertex

=

(

4

,

2

)


to obtain the intercepts


let x = 0, in the equation for y-intercept


let y = 0, in the equation for x-intercept


x

=

0

y

=

0

+

0

+

14

=

14

y-intercept


y

=

0

(

x

+

4

)

2

2

=

0

add 2 to both sides


(

x

+

4

)

2

=

2


take the square root of both sides


(

x

+

4

)

2

=

±

2

note plus or minus


x

+

4

=

±

2

subtract 4 from both sides


x

=

4

±

2

exact values

graph{(y-x^2-8x-14)((x+4)^2+(y+2)^2-0.04)=0 [-10, 10, -5, 5]}

Answer: y = (x - 3)² + 5

Step-by-step explanation:

  y   = x² - 6x + 14

  -14               -14

y - 14 = x² - 6x

y - 14 +  9   = x² - 6x +  9  

             ↑            ↓       ↑

                         [tex]\frac{-6}{2}[/tex] = (-3)²

y - 5 = (x - 3)²

  +5              +5

y      = (x - 3)² + 5