Respuesta :

We are given

v is inversely proportional to r^2

so, we can write our equation as

[tex]v=\frac{k}{r^2}[/tex]

where

k is proportionality constant

we have

r=2 and v=12

so, we can use it and find k

[tex]12=\frac{k}{2^2}[/tex]

[tex]k=48[/tex]

now, we can plug back k

[tex]v=\frac{48}{r^2}[/tex]

we can plug r=2.83

so, we can plug it and find v

[tex]v=\frac{48}{2.83^2}[/tex]

[tex]r=\frac{48}{8.0089}[/tex]

[tex]v=5.9933[/tex]

So, the approximate value of v is 6..........Answer

Answer:

The correct answer option is 6.

Step-by-step explanation:

We know that [tex]v[/tex] is inversely proportional to [tex]r^2[/tex] so we can write it as:

[tex]v[/tex] ∝ [tex]\frac{1}{r^2}[/tex]

To change the proportionality to equality, we need to have a constant k.

[tex]v = \frac{k}{r^2}[/tex]

When [tex]r=2[/tex]then  [tex]v=12[/tex] so we can find the value of the constant [tex]k[/tex]:

[tex]12=\frac{k}{2^2}[/tex]

[tex]k=48[/tex]

Now that we know the value of [tex]k[/tex], we can find the value of  [tex]v[/tex] when  [tex]r=2.83[/tex]:

[tex]v=\frac{48}{2.83^2}[/tex]

[tex]v= 5.99[/tex] ≈ [tex]6[/tex]