Respuesta :

Answer:

Rectangle ABCD is similar to Rectangle WXYZ .

When two polygons( Rectangle) are similar their interior angles are equal i.e equal to 90°  and sides are proportional.

[tex]\frac{AB}{WX}=\frac{BC}{XY}=\frac{CD}{YZ}=\frac{AD}{WZ}[/tex]

Let this ratio be equal to m.

If m>1, then Rectangle A B CD has expanded.

If 0<m<1, then  Rectangle A B CD has Shrank.

So,⇒ W X= m× AB→[Larger Rectangle] Or ⇒ m× W X=  AB→[Smaller rectangle}

⇒X Y= m× B C→[Larger Rectangle]   Or⇒  m ×X Y=  B C→[Smaller rectangle}

⇒As ,Area of A B CD = 30 square inches

⇒Length × Breadth = 30 square inches

⇒ AB×CD = 30 square inches

⇒W X/m × X Y/m= 30 square inches

⇒Area(Enlarged Rectangle W X Y Z)=30×m² square inches

If the Rectangle has shrank by m units , then

Area(Rectangle W X Y Z)=[tex]\frac{30}{m^2}[/tex] square inches



Answer:

Area of rectangle WXYZ = ( Area of rectangle  ABCD ) / [tex]k^2[/tex]

Step-by-step explanation:

We know that two polygons are said to be similar if their sides are proportional.

As ABCD and WXYZ are similar,

[tex]\frac{AB}{WX}=\frac{BC}{XY}=\frac{CD}{YZ}=\frac{AD}{WZ}[/tex]

Let this ratio be equal to k,

So,

[tex]\frac{AB}{WX}=\frac{BC}{XY}=\frac{CD}{YZ}=\frac{AD}{WZ}=k\\AB=k\,WX\,,\,BC=k\,XY\,,\,CD=k\,YZ\,,\,AD=k\,WZ[/tex]

Area of rectangle ABCD = 30 square inches = length × breadth = AB × BC = k WX × k XY = [tex]k^2[/tex] WX × XY = [tex]k^2[/tex] × Area of rectangle WXYZ.

So, if know value of k, we can find area of rectangle WXYZ

i.e, Area of rectangle WXYZ = ( Area of rectangle  ABCD ) / [tex]k^2[/tex]