Respuesta :

Answer: [tex]\text{Length of AG=}\frac{2\sqrt{63}}{3}[/tex]

Explanation:  

Please follow the diagram in attachment.  

As we know median from vertex C to hypotenuse is CM  

[tex]\therefore CM=\frac{1}{2}AB[/tex]

We are given length of CG=4  

Median divide by centroid 2:1  

CG:GM=2:1  

Where, CG=4

[tex]\therefore GM=2[/tex] ft

Length of CM=4+2= 6 ft  

[tex]\therefore CM=\frac{1}{2}AB\Rightarrow AB=12[/tex]

In [tex]\triangle ABC, \angle C=90^0[/tex]

Using trigonometry ratio identities  

[tex] AC=AB\sin 30^0\Rightarrow AC=6[/tex] ft

[tex] BC=AB\cos 30^0\Rightarrow BC=6\sqrt{3}[/tex] ft  

[tex] CN=\frac{1}{2}BC\Rightarrow CN=3\sqrt{3}[/tex] ft

In [tex] \triangle CAN, \angle C=90^0[/tex]  

Using pythagoreous theorem  

[tex]AN=\sqrt{6^2+(3\sqrt{3})^2\Rightarrow \sqrt{63}[/tex]

Length of AG=2/3 AN

[tex]\text{Length of AG=}\frac{2\sqrt{63}}{3}[/tex] ft


Ver imagen JenelleTeeters