A rocket is divided into 3 sections. The top section is one -sixth the length of the bottom section. The middle section is one -half the length bottom section. The total length of the rocket is 240 ft. Find the length of the top section

Respuesta :

frika

Let the bottom section has length x feet.

1. The top section is [tex]\dfrac{1}{6}[/tex] the length of the bottom section, then the length of the top section is [tex]\dfrac{1}{6}x.[/tex]

2. The middle section is [tex]\dfrac{1}{2}[/tex] the length bottom section, then the middle section has length [tex]\dfrac{1}{2}x.[/tex]

3. The total length of the rocket is

[tex]x+\dfrac{1}{6}x+\dfrac{1}{2}x[/tex]

that is 240 feet.

Thus, you have the equation

[tex]x+\dfrac{1}{6}x+\dfrac{1}{2}x=240.[/tex]

4. Solve it. Multiply this equation by 6:

[tex]6x+x+3x=240\cdot 6,\\\\10x=1,440.[/tex]

Divide it by 10:

[tex]x=144\ ft.[/tex]

The length of the bottom section is 144 feet, then the length of the top section is

[tex]\dfrac{1}{6}x=\dfrac{1}{6}\cdot 144=24\ ft.[/tex]

Answer: The top section has length 24 feet

Answer:

  Length of top section of rocket  = 24 ft

Explanation:

   We have length of top section = One -sixth the length of the bottom section

   Length of middle section = One -half the length bottom section.

   Let length of bottom section be x.

   So length of top section [tex]=\frac{1}{6}*x=\frac{x}{6}[/tex]

   Length of middle section [tex]=\frac{1}{2}*x=\frac{x}{2}[/tex]

   We have total length of rocket = 240 ft

   Also we have, total length [tex]=x+\frac{x}{6} +\frac{x}{2}\\\\= \frac{6x}{6}+\frac{x}{6} +\frac{3x}{6}\\\\= \frac{10x}{6}\\\\=\frac{5x}{3}[/tex]

   So, [tex]\frac{5x}{3}= 240\\ \\ x=144ft[/tex]

 Length of bottom section = 144 ft

 Length of top section [tex]=\frac{1}{6}*144=24ft[/tex]

 Length of top section of rocket  = 24 ft