Answer:
Given:- the length of a rectangle is triple the width. it's perimeter is more than 40m.
Now, from the given condition we have , [tex]l=3b[/tex] where l is the length of the rectangle and b is the width of the rectangle.
Perimeter(P) of a rectangle is given by, [tex]P=2(l+b)[/tex]
Since perimeter is more than 40 m we have,
[tex]2(l+b)>40[/tex]
[tex]2(3b+b)>40[/tex]
[tex]2\cdot 4b>40[/tex]
8b>40
⇒ b>5 m
since, [tex]l=3b[/tex] then [tex]l>3\cdot 5[/tex]
⇒ [tex]l >15 m[/tex]
if we take the integers, the smallest possible values for its length and width , [tex]l=16[/tex] m and b=6 m.