Respuesta :

Answer:

Simplify the expression: [tex]\frac{\frac{b^2+5b+6}{3bc}}{\frac{b^2-9}{6bc}}[/tex]

The top expression given in the above fraction is Numerator and the bottom expression is called Denominator.

Now, multiply the numerator and denominator by [tex]6bc[/tex] ;

[tex]\frac{6bc \cdot(\frac{b^2+5b+6}{3bc})}{6bc \cdot (\frac{b^2-9}{6bc})}[/tex]

Simplify:

[tex]\frac{b^2+5b+6}{b^2-9}}[/tex]

Now, Factor the numerator [tex]b^2+5b+6 = (b+3)(b+2)[/tex] and denominator [tex]b^2-9 = (b-3)(b+3)[/tex];

[tex]\frac{(b+3)(b+2)}{(b+3)(b-3)}}[/tex]

Now, cancel the common factor (b+3) we get;

[tex]\frac{(b+3)(b+2)}{(b+3)(b-3)}} = \frac{b+2}{b-3}[/tex]

Therefore, the simplify expression of [tex]\frac{\frac{b^2+5b+6}{3bc}}{\frac{b^2-9}{6bc}}[/tex] is, [tex]\frac{b+2}{b-3}[/tex]