Respuesta :

Given roots are (-3)  and ([tex]2 + \sqrt{3} [/tex])

[tex]2 + \sqrt{3} [/tex] is one of the root. So other root is  [tex]2 - \sqrt{3}[/tex]

So we have three roots -3  , [tex]2 + \sqrt{3} [/tex] and [tex]2 - \sqrt{3} [/tex]

Now we write the all the roots in factor form

[tex](x -(-3)) (x- (2 + \sqrt{3}) (x- (2 - \sqrt{3})[/tex]

[tex](x + 3) (x- 2 - \sqrt{3}) (x- 2 + \sqrt{3})[/tex]

Now we multiply last two parenthesis

[tex](x + 3) (x^2- 2x +x\sqrt{3} -2x + 4 -2\sqrt{3} - x \sqrt{3} +2 \sqrt{3} - 3)[/tex]

Now combine like terms

[tex](x + 3) (x^2- 4x+1)[/tex]

[tex](x^3 -4x^2 +x + 3x^2-12x +3)[/tex]

[tex](x^3 - x^2 - 11x +3)[/tex]