Multiplying means you add the exponents and dividing means you subtract the exponents. Treat the decimals as you normally would.
[tex](4.3 \times {10}^{8} ) \times (2.0 \times {10}^{6} )[/tex]
[tex]4.3 \times 2.0 = 8.6[/tex]
[tex]8 + 6 = 14[/tex]
[tex]8.6 \times {10}^{14} [/tex]
[tex](6 \times {10}^{3} ) \times (1.5 \times {10}^{ - 2} )[/tex]
[tex]6 \times 1.5 = 9[/tex]
[tex]3 + - 2 = 1[/tex]
[tex]9 \times {10}^{1} [/tex]
[tex](1.5 \times {10}^{ - 2} ) \times (8.0 \times {10}^{ - 1} )[/tex]
[tex]1.5 \times 8 = 12[/tex]
[tex] - 2 + - 1 = - 3[/tex]
[tex]12 \times {10}^{ - 3} [/tex]
[tex] \frac{(7.8 \times {10}^{3}) }{(1.2 \times {10}^{4}) } [/tex]
[tex] \frac{7.8}{1.2} = 6.5[/tex]
[tex]3 - 4 = - 1[/tex]
[tex]6.5 \times {10}^{ - 1} [/tex]
[tex] \frac{(8.1 \times {10}^{ - 2} )}{(9.0 \times {10}^{2} )} [/tex]
[tex] \frac{8.1}{9.0} = 0.9[/tex]
[tex] - 2 - 2 = - 4[/tex]
[tex]0.9 \times {10}^{ - 4} [/tex]
[tex] \frac{6.48 \times {10}^{5} }{(2.4 \times {10}^{4} )(1.8 \times {10}^{ - 2}) } [/tex]
[tex]2.4 \times 1.8 = 4.32[/tex]
[tex]4 + - 2 = 2[/tex]
[tex] \frac{6.48 \times {10}^{5} }{4.32 \times {10}^{2} } [/tex]
[tex] \frac{6.48}{4.32} = 1.5[/tex]
[tex]5 - 2 = 3[/tex]
[tex]1.5 \times {10}^{3} [/tex]