What is the solution of the equation over the complex numbers

Answer:
[tex]2i\sqrt{3}[/tex]
[tex]-2i\sqrt{3}[/tex]
Step-by-step explanation:
[tex]x^2 + 12[/tex]
First set the equation to 0
[tex]x^2 + 12[/tex]
[tex]x^2 + 12 = 0[/tex]
Second, get the 12 on the right side of the equal sign by adding a -12 to each side
[tex]x^2 + 12 = 0[/tex]
[tex]x^2 + 12 + (-12) = 0 -12[/tex]
[tex]x^2 = -12[/tex]
Square root both sides of the equal sign.
[tex]x^2 = -12[/tex]
[tex]\sqrt{x^2} = \sqrt{-12}[/tex]
Take the square root on left sides of the equal sign.
[tex]\sqrt{x^2} = \sqrt{-12}[/tex]
[tex]x = \sqrt{-12}[/tex]
Take the square root on the right side of the equal sign. Remember [tex]\sqrt{-1} = i[/tex]
[tex]x = \sqrt{-12}[/tex]
[tex]x = \sqrt{4}*\sqrt{-1}\sqrt{3}}[/tex]
[tex]x = 2i\sqrt{3}[/tex]
AND
[tex]x = -2i\sqrt{3}[/tex]