Find the sides of a rectangle having area 125 square units if the sides are in the ratio 5:3.

Whom ever answers first will get brainiest answer!

Respuesta :

For this case we have the following data:

Area of the rectangle, [tex]A = 125[/tex]

Relationship of the sides 5: 3

By definition, the area of a rectangle is given by:

[tex]A = a * b[/tex]

Where

  • a: is the longest side.
  • b: it is the side of least length.

If the sides have a 5: 3 ratio, it means:

[tex]\frac{a}{b}=\frac{5}{3}[/tex]

[tex]a=\frac{5}{3}b[/tex]

Substituting in the formula of the area, we have:

[tex]125 =a * b\\[/tex]

[tex]125=\frac{5}{3}b*b[/tex]

Clearing b:

[tex]3 * 125 = 5 * b ^ 2[/tex]

[tex]\frac{375}{5}= b ^ 2[/tex]

[tex]75 = b ^ 2[/tex]

[tex]b =\sqrt{75}b = 8.7[/tex] units

Substituting and clearing:

[tex]125 = a * 8.7[/tex]

[tex]a =\frac{125}{8.7}[/tex]

[tex]a = 14.4[/tex]units

So, the sides are:

[tex]a = 14.4[/tex]units

[tex]b = 8.7[/tex]units

Answer:

[tex]a = 14.4[/tex]units

[tex]b = 8.7[/tex]units