Answer:
Perimeter of triangle = 71.72 unit.
Area of triangle = 149.44 unit²
Explanation:
Distance between (a,b) and (c,d) = [tex]\sqrt{(c-a)^2+(d-b)^2}[/tex].
So we have SB = [tex]\sqrt{(-2-15)^2+(21-(-8))^2}=\sqrt{1130} =33.62[/tex]unit
BA = [tex]\sqrt{(0-(-2))^2+(0-21^2)}=\sqrt{445} =21.10[/tex]unit
AS = [tex]\sqrt{(15-0)^2+(-8-0)}=\sqrt{289} =17[/tex]unit
So perimeter of triangle = 33.62 + 21.10 + 17 = 71.72 unit.
We have SB = Base = 33.62 unit and Perpendicular height = 8.89 units.
Area = 0.5 x Base x Perpendicular height.
= 0.5 x 33.62 x 8.89 = 149.44 unit²