Triangle SBA has coordinate S(15,-8), B(-2,21), A(0,0). If the height of the triangle for the corresponding base sb is 8.89 units, then determine the perimeter and area of SBA.

Respuesta :

Answer:

Perimeter of triangle = 71.72 unit.

Area of triangle = 149.44 unit²

Explanation:

 Distance between (a,b) and (c,d) = [tex]\sqrt{(c-a)^2+(d-b)^2}[/tex].

 So we have  SB = [tex]\sqrt{(-2-15)^2+(21-(-8))^2}=\sqrt{1130} =33.62[/tex]unit

                       BA = [tex]\sqrt{(0-(-2))^2+(0-21^2)}=\sqrt{445} =21.10[/tex]unit

                       AS = [tex]\sqrt{(15-0)^2+(-8-0)}=\sqrt{289} =17[/tex]unit

 So perimeter of triangle = 33.62 + 21.10 + 17 = 71.72 unit.

  We have SB = Base = 33.62 unit and Perpendicular height = 8.89 units.

  Area = 0.5 x Base x Perpendicular height.

           = 0.5 x 33.62 x 8.89 = 149.44 unit²