Respuesta :

gmany

We know:

[tex]LCM(a,\ b)=\dfrac{ab}{GCF(a,\ b)}[/tex]

We have

[tex]GCF(a,\ b)=2,\ LCM(a,\ b)=20,\ a\leq12,\ b\leq12[/tex]

Substitute:

[tex]20=\dfrac{ab}{2}\qquad|\cdot2\\\\ab=40[/tex]

[tex]40=1\cdot40=2\cdot20=4\cdot10=5\cdot8[/tex]

Only 4 and 10 meet the requirements of the question.

--------------------------------------------------------------------

40 and 1 NOT, because 40 > 12

20 and 2 NOT, because 20 > 12

5 and 8 NOT because GCF(5, 8) = 1

The numbers are 4 and 10 or 5 and 8.

Lowest common multiple :

The relation is given as,

                 [tex]LCM*GCF=m*n[/tex]

Where m and n are two numbers.

Given that,  [tex]GCF=2,LCM=20[/tex]

Substitute values in above relation.

              [tex]m*n=2*20=40[/tex]

Since, both numbers less than or equal to 12.

We observed that,

              [tex]4*10=40\\\\5*8=40\\[/tex]

The numbers are 4 and 10 or 5 and 8.

Learn more about greatest common factor here:

https://brainly.com/question/16054958