Respuesta :

c is the answer I think to be honest

Answer:

[tex]f(x)=\left \{ {{x^2+4}\ \ \ \ \ x<2 \atop {-x+4}\ \ \ x\geq 2}\right[/tex]

C is correct

Step-by-step explanation:

In the given graph function break at point x=2.

Left side about point x=2 is parabolic and right side straight line.

So, it would be piece wise function.

For parabola:

vertex: (0,4) and passing point (2,8)

[tex]y=a(x-h)^2+k[/tex]

[tex]y=ax^2+4[/tex]

[tex]a=1[/tex]

[tex]y=x^2+4[/tex]    For x<2

For straight line:

Twp points (4,0) and (2,2)

[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

[tex]y-2=\dfrac{0-2}{4-2}(x-2)[/tex]

[tex]y-2=-1(x-2)[/tex]

[tex]y=-x+4[/tex]     For x≥2

Hence, The piece wise function will be

[tex]f(x)=\left \{ {{x^2+4}\ \ \ \ \ x<2 \atop {-x+4}\ \ \ x\geq 2}\right[/tex]

Otras preguntas