Use the vertex (h, k) and a point on the graph (x, y) to find the general form of the equation of the quadratic function.

(h, k) = (−6, −1), (x, y) = (−9, 8)

Respuesta :

Answer-

The general form of the equation of the quadratic function is,

[tex]\Rightarrow y= (x+6)^2 -1[/tex]

Solution-

General vertex form of a quadratic,

[tex]y = a(x - h)^2 + k[/tex]

Where,

a = focus,

h = x-coordinate of vertex,

k = y-coordinate of vertex.

As the point (−9, 8) lies on the curve, so it must satisfy the curve equation.

[tex]\Rightarrow 8 = a(-9 - (-6))^2 + (-1)[/tex]

[tex]\Rightarrow 8 = a(-3)^2 -1[/tex]

[tex]\Rightarrow 8 = 9a -1[/tex]

[tex]\Rightarrow 9 = 9a[/tex]

[tex]\Rightarrow a=1[/tex]

∴ Then the equation becomes,

[tex]\Rightarrow y= 1(x- (-6))^2 + (-1)[/tex]

[tex]\Rightarrow y= (x+6)^2 -1[/tex]


Ver imagen InesWalston