[tex]f(x)=2x-5,\ g(x)=x^2-4x-8\\\\(f+g)(x)=f(x)+g(x)=(2x-5)+(x^2-4x-8)\\\\=2x-5+x^2-4x-8=x^2+(2x-4x)+(-5-8)=x^2-2x-13[/tex]
Answer:
[tex]\text{The value of (f+g)(x) is }x^2-2x-13[/tex]
Step-by-step explanation:
Given the two functions
[tex]f(x)=2x-5[/tex]
[tex]g(x)=x^2-4x-8[/tex]
we have to find the value of (f+g)(x)
As we know
[tex](f+g)(x)=f(x)+g(x)=(2x-5)+(x^2-4x-8)[/tex]
[tex]=2x-5+x^2-4x-8[/tex]
[tex]=x^2+2x-4x-5-8=x^2-2x-13[/tex]
[tex]\text{Hence, the value of (f+g)(x) is }x^2-2x-13[/tex]