Viscous force on the plate is given by
[tex]F = \eta A \frac{dv}{dx}[/tex]
[tex]F_v = 2.5* 1.5*1.5 * \frac{0.1}{1.2* 10^{-3}}[/tex]
[tex]F_v = 468.75 N[/tex]
Buoyancy force on the plate is given as
[tex]F_b = \rho V g[/tex]
[tex]F_b = 950* 1.5*1.5*1.2*10^{-3} * 9.8[/tex]
[tex]F_b = 25.14 N[/tex]
Weight of the plate = 50 N
Now for constant speed of plate the net force on it must be zero
SO here we can say
[tex]F_v + W = F_b + F[/tex]
[tex]468.75 + 50 = 25.14 + F[/tex]
[tex]F = 493.6 N[/tex]
So it will require a constant force of 493.6 N