Respuesta :
NAMASTE
HERE IS YOUR ANSWER:
[tex] \boxed{Frequecy = \frac{1}{time \: period} } [/tex]
Frequency (given) = 8.85× [tex] {10}^{7} [/tex]hz
time period =
[tex] \frac{1}{8.85 \times {10}^{7}} [/tex]
= 0.112 × [tex] {10}^{-7} [/tex]
= 1.12 × [tex]{10}^{-8}[/tex]
HERE IS YOUR ANSWER:
[tex] \boxed{Frequecy = \frac{1}{time \: period} } [/tex]
Frequency (given) = 8.85× [tex] {10}^{7} [/tex]hz
time period =
[tex] \frac{1}{8.85 \times {10}^{7}} [/tex]
= 0.112 × [tex] {10}^{-7} [/tex]
= 1.12 × [tex]{10}^{-8}[/tex]
Answer: The period of the FM wave [tex]1.1299\times 10^{-8} seconds[/tex].
Explanation:
Frequency of the wave = [tex]8.85\times 10^{7} Hertz[/tex]
Frequency is inverse of time period that is :
[tex]Frequency=\frac{1}{\text{Time period}}[/tex]
[tex]\text{time period}=\frac{1}{frequency}[/tex]
[tex]=\frac{1}{8.85\times 10^{7} Hertz}=0.11299\times 10^{-7} seconds=1.1299\times 10^{-8} seconds[/tex]
The period of the FM wave [tex]1.1299\times 10^{-8} seconds[/tex].