Respuesta :

THE ANSWER IS:

the measure of the arc FH is 48 degrees

and btw I flipping love killing stalking :)

Answer:

[tex]48^{\circ}[/tex]

Step-by-step explanation:

Consider we need to find [tex]m\widehat{FH}[/tex],

Since, if two chords of a circle intersect outside the circle then the measure of intercepted angle is half of the difference of the measures of intercepted arcs.

Thus,

[tex]m\angle ADJ = \frac{m\widehat{AJ}-m\widehat{BE}}{2}[/tex]

By the diagram,

[tex]37^{\circ}=\frac{m\widehat{AJ}-38^{\circ}}{2}[/tex]

[tex]74^{\circ}=m\widehat{AJ}-38^{\circ}[/tex]

[tex]\implies m\widehat{AJ}=74^{\circ}+38^{\circ}=112^{\circ}[/tex]

Now,

[tex]m\angle AGJ = \frac{m\widehat{AJ}-m\widehat{FH}}{2}[/tex]

[tex]32^{\circ}=\frac{112^{\circ}-m\widehat{FH}}{2}[/tex]

[tex]64^{\circ}=112^{\circ}-m\widehat{FH}[/tex]

[tex]\implies m\widehat{FH}= 112^{\circ}-64^{\circ}=48^{\circ}[/tex]

Hence, SECOND OPTION would be correct.