Determine the specific gravity of chlorine ​(cl 2​) gas at 21 degrees celsius​ [°c] and a pressure of 0.8 atmospheres​ [atm]. Assume chlorine is an ideal gas and obeys the ideal gas law. The molecular weight of chlorine is 70 grams per mole​ [g/mol].

Respuesta :

Ideal gas law :

PV= nRT

where,

P = pressure

V= volume

n= number of moles

R= universal gas constant

T = temperature

Now, number of moles  = [tex]\frac{given mass in g}{molar mass}[/tex]

Put the value of number of moles in ideal gas law,

PV= [tex]\frac{given mass in g}{molar mass}[/tex]RT

PV= [tex]\frac{m}{M}[/tex]RT

PM= [tex]\frac{m}{V}[/tex]RT

Density is the ratio of mass to the volume, thus, above equation is also written as:

PM= [tex]\rho _{chlorine}[/tex]RT

[tex]\rho _{chlorine}= \frac{PM}{RT}[/tex]

Put the values,

Temperature  = [tex]21^{o}C[/tex] + 273 = [tex]294 K[/tex]

Pressure = 0.8 atm

[tex]\rho _{chlorine}= \frac{0.8 atm\times 70 g/mol }{0.082057 L atm mol^{-1}K^{-1}\times 294^{o}C }[/tex]

= [tex]\frac{56 atm g/mol }{24.124758 L atm mol^{-1} }[/tex]

= [tex]2.32 g/L[/tex]

Now, specific gravity =[tex]\frac{\rho _{chlorine}}{\rho _{water}}[/tex]

=[tex]\frac{2.32 g/L}{1 g/cm^{3}}[/tex]

1 L = 1000 [tex]cm^{3}[/tex]

So, specific gravity  =

[tex]\frac{2.32\times 10^{3} g/cm^{3}}{1 g/cm^{3}}[/tex]

= [tex]2.32 \times 10^{3}[/tex]

Thus, specific gravity is [tex]2.32 \times 10^{3}[/tex]