Respuesta :

Given expression : [tex]y^4+14y^2+49[/tex].

Soltution: Let us convert given expression in quadratic form.

y^4 =(y^2)^2.

Given expression could be written in quadratic form as,

(y2)^2 + 2 * (y^2) (7) +(7)^2.

If we compare that above expression by square of the sum identity,

(a)^2 + 2(a)(b) +(b)^2 = (a+b)^2.

We can see that a = y^2, b=7.

Substituting values of a and b in (a+b)^2, we get

[tex](y^2+7)^2[/tex]

Expanding above expression into two factors, we get

[tex](y^2+7)(y^2+7).[/tex]

[tex]\sqrt{-7} *\sqrt{-7}=i\sqrt{7}*i\sqrt{7}=(i\sqrt{7})^2[/tex]

But [tex](i\sqrt{7})^2=-7.[/tex].

We have +7 there.

So, 7=[tex]-(i\sqrt{7})^2[/tex][/tex]

Substituting this value of +7 in [tex](y^2+7)(y^2+7)[/tex] expression, we get

[tex](y^2+7)(y^2+7)=(y^2-(i\sqrt{7})^2)(y^2-(i\sqrt{7})^2)[/tex]

Applying difference of the squares identity (n)^2 -(m)^2 = (n-m)(n+m).

[tex](y^2-(i\sqrt{7})^2)=(y-i\sqrt{7})(y+i\sqrt{7})[/tex]

Therefore, final factored expression is

[tex](y^2-(i\sqrt{7})^2)(y^2-(i\sqrt{7})^2)=(y-i\sqrt{7})(y+i\sqrt{7})(y-i\sqrt{7})(y+i\sqrt{7})[/tex]