Precalculus help!

1. Find (fog)(x) when f(x)=2/x+3 and g(x)=1/2x.

2. Find (f*g)(x) when f(x)=(sqrt)x+3/x and g(x)=(sqrt)x+3/2x.

3. Find (f+g)(x) when f(x)=x^3-2x^2+1 and g(x)=4x^3-5x+7

Respuesta :

Answer:

1) [tex](f o g)(x)=\frac{4}{x+6}[/tex]  

2) [tex](f*g)(x)=\frac{2x^2+9x^{\frac{3}{2}}+9}{2x^2}[/tex]

3) [tex](f+g)(x)=5x^3-2x^2-5x+8[/tex]    

Step-by-step explanation:

1) Given : [tex]f(x)=\frac{2}{x+3}[/tex] and [tex]g(x)=\frac{1}{2}x[/tex]

To find :  [tex](f o g)(x)[/tex]          

Solution :  

We know that,

[tex](f o g)(x)=f(g(x))[/tex] i.e g(x) within f(x),

[tex]f(g(x))=\frac{2}{g(x)+3}[/tex]        

[tex]f(g(x))=\frac{2}{\frac{1}{2}x+3}[/tex]        

[tex]f(g(x))=\frac{2}{\frac{x+6}{2}}[/tex]        

[tex]f(g(x))=\frac{4}{x+6}[/tex]        

Therefore, [tex](f o g)(x)=\frac{4}{x+6}[/tex]  

2) Given : [tex]f(x)=\sqrt x+\frac{3}{x}[/tex] and [tex]g(x)=\sqrt x+\frac{3}{2x}[/tex]

To find :  [tex](f*g)(x)[/tex]          

Solution :

We know that,

[tex](f*g)(x)=f(x) \times g(x)[/tex]

[tex]f(x) \times g(x)=(\sqrt x+\frac{3}{x})\times (\sqrt x+\frac{3}{2x})[/tex]  

[tex]f(x) \times g(x)=x+\frac{3\sqrt x}{2x}+\frac{3\sqrt x}{x}+\frac{9}{2x^2}[/tex]      

[tex]f(x) \times g(x)=\frac{2x^2+3x\sqrt x+6x\sqrt x+9}{2x^2}[/tex]    

[tex]f(x) \times g(x)=\frac{2x^2+9x^{\frac{3}{2}}+9}{2x^2}[/tex]  

Therefore, [tex](f*g)(x)=\frac{2x^2+9x^{\frac{3}{2}}+9}{2x^2}[/tex]  

3) Given : [tex]f(x)=x^3-2x^2+1[/tex] and [tex]g(x)=4x^3-5x+7[/tex]

To find :  [tex](f+g)(x)[/tex]          

Solution :

We know that,

[tex](f+g)(x)=f(x)+g(x)[/tex]

[tex]f(x)+g(x)=x^3-2x^2+1+4x^3-5x+7[/tex]

[tex]f(x)+g(x)=5x^3-2x^2-5x+8[/tex]

Therefore, [tex](f+g)(x)=5x^3-2x^2-5x+8[/tex]