Respuesta :
You have a single sequence of integers [tex]a_2,\ a_3,\ a_4,\ a_5,\ a_6,\ a_7[/tex] such that
[tex]\dfrac{a_2}{2!} + \dfrac{a_3}{3!} + \dfrac{a_4}{4!} + \dfrac{a_5}{5!} + \dfrac{a_6}{6!} + \dfrac{a_7}{7!}=\dfrac{5}{7},[/tex]
where [tex]0 \le a_i < i[/tex] for [tex]i = 2, 3, \dots, 7.[/tex]
1. Multiply by 7! to get
[tex]\dfrac{7!a_2}{2!} + \dfrac{7!a_3}{3!} + \dfrac{7!a_4}{4!} + \dfrac{7!a_5}{5!} + \dfrac{7!a_6}{6!} + \dfrac{7!a_7}{7!}=\dfrac{7!\cdot 5}{7},\\ \\7\cdot 6\cdot 5\cdot 4\cdot 3\cdoa a_2+7\cdot 6\cdot 5\cdot 4\cdot a_3+7\cdot 6\cdot 5\cdot a_4+7\cdot 6\cdot a_5+7\cdot a_6+a_7=6!\cdot 5,\\ \\7(6\cdot 5\cdot 4\cdot 3\cdoa a_2+6\cdot 5\cdot 4\cdot a_3+6\cdot 5\cdot a_4+6\cdot a_5+a_6)+a_7=3600.[/tex]
By Wilson's theorem,
[tex]a_7+7\cdot (6\cdot 5\cdot 4\cdot 3\cdoa a_2+6\cdot 5\cdot 4\cdot a_3+6\cdot 5\cdot a_4+6\cdot a_5+a_6)\equiv 2(\mod 7)\Rightarrow a_7=2.[/tex]
2. Then write [tex]a_7[/tex] to the left and divide through by 7 to obtain
[tex]6\cdot 5\cdot 4\cdot 3\cdoa a_2+6\cdot 5\cdot 4\cdot a_3+6\cdot 5\cdot a_4+6\cdot a_5+a_6=\dfrac{3600-2}{7}=514.[/tex]
Repeat this procedure by [tex]\mod 6:[/tex]
[tex]a_6+6(5\cdot 4\cdot 3\cdoa a_2+ 5\cdot 4\cdot a_3+5\cdot a_4+a_5)\equiv 4(\mod 6)\Rightarrow a_6=4.[/tex]
And so on:
[tex]5\cdot 4\cdot 3\cdoa a_2+ 5\cdot 4\cdot a_3+5\cdot a_4+a_5=\dfrac{514-4}{6}=85,\\ \\a_5+5(4\cdot 3\cdoa a_2+ 4\cdot a_3+a_4)\equiv 0(\mod 5)\Rightarrow a_5=0,\\ \\4\cdot 3\cdoa a_2+ 4\cdot a_3+a_4=\dfrac{85-0}{5}=17,\\ \\a_4+4(3\cdoa a_2+ a_3)\equiv 1(\mod 4)\Rightarrow a_4=1,\\ \\3\cdoa a_2+ a_3=\dfrac{17-1}{4}=4,\\ \\a_3+3\cdot a_2\equiv 1(\mod 3)\Rightarrow a_3=1,\\ \\a_2=\dfrac{4-1}{3}=1.[/tex]
Answer: [tex]a_2=1,\ a_3=1,\ a_4=1,\ a_5=0,\ a_6=4,\ a_7=2.[/tex]