Respuesta :

Let us assume first number is = x and second number is =y.

Adding those numbers we get 8. So we can setup first equation as

x+y=8.                      ..........................equation (1)

Multiplying those numbers we get -3. So we can setup second equation as

x*y=-3.                     ..........................equation(2).

we need to solve first equation for y

x+y=8    subtracting x from both sides, we get

x-x+y=8-x

y=8-x.

Substituting x=8-x in second equation, we get

x*(8-x)=-3.

Distributing x over (8-x), we get

8x -x^2 =-3

Adding 3 on both sides, we get

8x -x^2+3 =-3+3

-x^2 + 8x +3 = 0

We can solve this quadratic equation for x now.

We have a=-1, b=8 and c=3.

Plugging values of a, b and c in quadratic formula, we get

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{-8\pm \sqrt{8^2-4\left(-1\right)3}}{2\left(-1\right)}[/tex]

[tex][=\frac{-8+\sqrt{76}}{-2}[/tex]and

[tex]x=\frac{-8-\sqrt{76}}{-2}[/tex]

[tex]\mathrm{Factor}\:8-2\sqrt{19}:\quad 2\left(4-\sqrt{19}\right)[/tex]

We get

[tex]x=\frac{2\left(4-\sqrt{19}\right)}{2}[/tex] and

[tex]x=\frac{2\left(4+\sqrt{19}\right)}{2}[/tex]

On simplfying above two values, we get

[tex]x=-\sqrt{19}+4,\:x=4+\sqrt{19}[/tex]

So, the required numbers are

[tex]-\sqrt{19}+4 \ and \ 4+\sqrt{19}[/tex].