Respuesta :

a simple way to do away with denominators, is we can simply multiply both sides by the LCD, in this case the LCD is 3, so let's multiply both sides by 3.


[tex]\bf 3\left( \cfrac{1}{3}x+y \right)=3(4)\implies x+3y=12\implies 3y=12-x \\\\\\ y=\cfrac{12-x}{3}\implies \stackrel{\textit{distributing the denominator}}{y=\cfrac{12}{3}-\cfrac{x}{3}}\implies y=4-\cfrac{1}{3}x[/tex]

Answer:

x=3 and y=3

y can be 3,2,1 and so on..

Step-by-step explanation:

Given function:

  • 1/3x+y=4

Multiply 1/3 by 3:

  • [tex]\frac{1}{3}[/tex]·[tex]3=1[/tex]

Subtract the two terms:

  • [tex]4-1=3[/tex]

Therefore, x=3 and y=3.