Answer:- The maximum mass of the object is [tex]1.74*10^-^2^1kg[/tex] .
Solution:- The equation for de-Broglie wavelength is:
[tex]\lambda =\frac{h}{mv}[/tex]
where, h is planck's constant, m is the mass and v is the velocity.
Given wavelength is 0.430 fm. fm stands for femtometer. let's convert it to meter.
[tex]1fm=10^-^1^5m[/tex]
[tex]0.430fm(\frac{10^-^1^5m}{1fm})[/tex]
= [tex]4.30*10^-^1^6m[/tex]
velocity is given as [tex]885m.s^-^1[/tex] . Let's plug in the values in the equation:
[tex]4.30*10^-^1^6m=\frac{6.626*10^-^3^4J.s}{m*885m.s^-^1}[/tex]
(at denominator the first m stands for mass and the second m is the unit of length that stands for meter)
We know that, [tex]J=kg.m^2.s^-^2[/tex]
So, [tex]4.30*10^-^1^6m=\frac{6.626*10^-^3^4kg.m^2.s^-^1}{m*885m.s^-^1}[/tex]
[tex]4.30*10^-^1^6m=\frac{7.48*10^-^3^7kg.m}{m}[/tex]
[tex]m=\frac{7.48*10^-^3^7kg.m}{4.30*10^-^1^6m}[/tex]
[tex]m=1.74*10^-^2^1kg[/tex]
So, the maximum mass of the object is [tex]1.74*10^-^2^1kg[/tex] .