What mass of salt (nacl) should you add to 1.42 l of water in an ice cream maker to make a solution that freezes at -11.2 ∘c ? Assume complete dissociation of the nacl and density of 1.00 g/ml for water?

Respuesta :

The mathematical expression for depression in freezing point is given as:

[tex]\Delta T_{f} =i K_{f}\times m[/tex]

where,

[tex]\Delta T_{f}[/tex] = depression in freezing point

[tex]K_{f}[/tex] = molal depression constant ([tex]1.86^{o}C/m[/tex])

m = molality

i = Van't Hoff factor

[tex]\Delta T_{f} =T_{solvent}-T_{solution}[/tex]

= [tex]0.0^{o}C-(-11.2^{o}C)[/tex]

= [tex]11.2^{o}C[/tex]

Now, put the values in formula,

[tex]11.2^{o}C =2\times 1.86^{o}C/m\times m[/tex]    (as sodium chloride dissociate into two ions, i =2)

m = [tex]\frac{11.2^{o}C}{1.86^{o}C/m}[/tex]

= [tex]6.02 m[/tex]

Now, molality of the solution = [tex]\frac{number of moles of solute}{kg of the solvent}[/tex]

Number of moles  =[tex]\frac{given mass in g}{molar mass}[/tex]

Molar mass of sodium chloride = 58.44 g/mol

molality of the solution = [tex]\frac{\frac{m in g}{58.44 g/mol}}{1.42 kg}[/tex]  (1 L = 1kg)

6.02 m = [tex]\frac{\frac{m in g}{58.44 g/mol}}{1.42 kg}[/tex]

mass in g = [tex]6.02 mol/kg \times 58.44 g/mol \times 1.42 kg [/tex]  

= [tex]499.56 g [/tex]

Thus, mass of sodium chloride is [tex]499.56 g [/tex]