Proceed as in example 6 in section 2.3 to solve the given initial-value problem. Dy dx + 2xy = f(x), y(0) = 6, where f(x) = x, 0 ≤ x < 1 0, x ≥ 1

Respuesta :

The given initial value problem is

[tex]\frac{\mathrm{d} y}{\mathrm{d} x}+ 2xy=f(x)[/tex]

It is given that

y(0) = 6, where f(x) = x, 0 ≤ x < 1 0, x ≥ 1

Now the equation reduces to

[tex]\frac{\mathrm{d} y}{\mathrm{d} x}+ 2xy=x[/tex]  -------------(1)

Integrating factor=[tex]e^{\int{2x}dx}=e^{x^{2}}[/tex]

Multiplying equation (1), both sides by integrating factor i.e[tex]e^{x^{2}[/tex]

The equation reduces to

[tex]e^{x^{2}}[\frac{\mathrm{d} y}{\mathrm{d} x}+ 2xy]=x\times e^{x^{2}}[/tex]

Integrating both sides, the equation reduces to

[tex]e^{x^{2}}\times y=\int x\times e^{x^{2}}dx[/tex]

Now integrating the function which is on right hand side, we get

put [tex]x^{2} =t[/tex] and then differentiating,we get

2 x dx = dt

⇒x dx = dt/2

[tex]e^{x^{2}}\times y=\int\frac{e^t}{2}dt[/tex]

                                = [tex]\frac{e^t}{2}[/tex]


Replacing t by x², we get

[tex]e^{x^{2}}\times y=\frac {e^{x^{2}}}{2} + C[/tex]    ---------------(2)

It is given that when x=0,y=6.

Putting these value in equation (2),we get

6=1/2 + C

⇒C= 6-1/2

⇒ C =11/2

The solution of the initial value problem is

[tex]e^{x^{2}}\times y=\frac {e^{x^{2}}}{2} + \frac{11}{2}[/tex]