(a) What is the sum of the following four vectors in unit-vector notation? For that sum, what are (b) the magnitude, (c) the angle in degrees, and (d) the angle in radians? Positive angles are counterclockwise from the positive direction of the x axis; negative angles are clockwise.
: 6.00 m at + 0.900 rad
: 5.00 m at - 75.0°
: 4.00 m at + 1.20 rad
: 6.00 m at - 210°

Respuesta :

6m at 0.9 radian means 6m at [tex]51.57^0[/tex]

Since positive angles are counter clockwise

6m at [tex]51.57^0[/tex] can be written as 6*cos[tex]51.57^0[/tex]i+6*sin[tex]51.57^0[/tex]j = 3.73i+4.70j

5m at [tex]-75^0[/tex] can be written as 5*cos[tex](-75)^0[/tex]i+5*sin[tex](-75)^0[/tex]j = 1.294i-4.83j

4m at 1.2 radian means 4m at [tex]68.75^0[/tex]

4m at [tex]68.75^0[/tex] can be written as 4*cos[tex]68.75^0[/tex]i+4*sin[tex]68.75^0[/tex]j = 1.45i+3.73j

6m at [tex]-210^0[/tex] can be written as 6*cos[tex](-210)^0[/tex]i+6*sin[tex](-210)^0[/tex]j = -5.20i-3j

a) So sum of the vector = 1.274i+0.6j

b) Magnitude = [tex]\sqrt{1.274^2+0.6^2} = 1.98 m[/tex]

c) Angle,  [tex]tan\theta = \frac{0.6}{1.274} \\ \\ \theta = 25.22^0[/tex]

The vector decomposition allows to find the results for the questions about the sum of the four vectors are:

   a) The sum vector is R = (1.27 i ^ + 6.60 j ^) m

   b) The modulus is: R = 6.72 m

   c) The angle of the resultant is: θ = 79.1º

   d) The angle in radians is: θ = 1,380 give

Given parameters

  • Vectors

      *   A = 6.00 m with teat1 = 0.900 rad

       *  B = 5.00 m with tea2 = -75º

      *   C = 4.00 m with tea3 = 1.20 rad

      *   D = 6.00 with tea = -210º

To find

  a) The sum of the four vectors

  b) The magnitude

  c) The angle in degrees

  d) The angle in radians

Vectors are magnitudes that have direction and sense, therefore for their addition vector algebra must be used.

One of the simplest methods for adding vectors is to decompose the vectors into a coordinate system, perform the algebraic addition, and then compose the resulting vector.

Let's use a coordenate system with the x-axis is horizontal and the y-axis is vertical, with trigonometry we decompose the vectors.

Let's start by reducing the angles to degrees, to avoid problems of using different units in the calculations.

     θ₁ = 0.9 rad ( [tex]\frac{180^{o} }{\pi \ rad}[/tex] ) = 51.57º

Let's measure the angle from the positive side of the x axis, counterclockwise.

     θ₂ = 360 -75 = 285º

     θ₃ = 1.20 rad ([tex]\frac{180^{o}}{\pi \ rad }[/tex] ) = 68.75º

     θ₄ = 360-210º = 150º

Let's use trigonometry to decompose the vectors, see attached.

Vector A

        sin θ₁ = [tex]\frac{A_y}{A}[/tex]  

        cos θ₁ = [tex]\frac{A_x}{A}[/tex]

        [tex]A_y[/tex] = A sin θ₁

        Aₓ = A cos θ₁

        [tex]A_y[/tex]= 6 sin 51.57 = 4.700 m

        Aₓ = 6 cos 51.57 = 3.729 m

     

Vector B

        [tex]B_y[/tex] = B sin θ₂

        Bₓ = B cos θ₂  

        [tex]B_y[/tex] = 5 sin 285 = -4.8296 m

        Bₓ = 5 cos 285 = 1.294 m

Vector C

        [tex]C_y[/tex] = C sin θ₃

        Cₓ = C cos θ₃

       [tex]C_y[/tex] = 4 sin 68.75 = 3.728 m

        Cₓ = 4 cos 68.75 = 1.4498 m

Vector D

    [tex]D_y[/tex] = D sin θ₄

    Dₓ = D cos θ₄

   [tex]D_y[/tex]= 6 sin 150 = 3.00 m

    Dₓ = 6 cos 150 = -5.196 m

Let's do the sum of the components of the vectors.  

    x = Aₓ + Bₓ + Cₓ + Dₓ

    x = 3,729 + 1,294 + 1,4498 - 5,196

    x = 1.2768 m

   

    y = A_y + B_y + C_y + D_y

    y = 4.700 -4.8296 +3.728 + 3.00

    y = 6.5984 m

a) The resulting vector in the form of unit vectors is: R = 1.27 i ^ + 6.60 j ^

b) Let's use the Pythagorean theorem to find the modulus

       R =[tex]\sqrt{x^2 + y^2}[/tex]  

       R = [tex]\sqrt{1.2768^2 + 6.5984^2}[/tex]  

       R = 6.72 m

c) Let's use trigonometry to find the angle.

      tan θ = [tex]\frac{y}{x}[/tex]  

      θ = tan⁻¹ [tex]\frac{y}{x}[/tex]  

      θ = tan⁻¹  [tex]\frac{6.5984}{1.3768}[/tex]  

      θ = 79.05º

d) Let's reduce to radians

      θ = 79.05º ( [tex]\frac{\pi \ rad}{180^{o}}[/tex] )

      θ = 1,380 rad

In conclusion, using the decomposition of vectors we can find the results for the questions about the sum of the four vectors are:

   a) The sum vector is R = (1.27 i ^ + 6.60 j ^) m

   b) The modulus is: R = 6.72 m

   c) The angle of the resultant is: θ = 79.1º

   d) The angle in radians is: θ = 1,38 give

Learn more here:  brainly.com/question/24550128

Ver imagen moya1316