Find the angle between the vectors. (first find an exact expression and then approximate to the nearest degree.)a = 5, −1, 6, b = −2, 6, 3

Respuesta :

the points given in  the question is [5,-1,6] and [-2,6,3]

the position vectors associated with these points are  given as

a=5i^-j^+6k^,b= -2i^+6j^+3k^

the dot product of these vectors are given as -[tex]a.b=ab*cos\alpha[/tex]

where α is the angle between them .

hence we have cosα=[tex]\frac{a.b}{ab}[/tex]

here [tex]a=\sqrt{5^2+[-1]^2+6^2}[/tex]

and [tex]b=\sqrt{[-2]^2+6^2+3^2}[/tex]

hence a=[tex]\sqrt{62}[/tex] and b=[tex]\sqrt{49}[/tex]

hence cosα=[tex]\frac{a.b}{ab}[/tex]

                   =5×[-2]+[-1]×6+6×3[tex]\frac{1}{\sqrt{62} *7}[/tex]

                   =[tex]\frac{2}{\sqrt{62}*7 }[/tex]

                   =0.0362857507

hence α=2.07947 degree