Respuesta :
Answer is: quantity of sulfur is 13 tons.
Chemical reaction: S(s) + O₂(g) → SO₂(g).
From chemical reaction: n(S) : n(SO₂) = 1 : 1.
n(S) = n(SO₂); amount of substance.
m(S) ÷ M(S) = m(SO₂) : M(SO₂).
m(S) : 32 g/mol = 26 t : 64 g/mol.
m(S) = (32 g/mol · 26 t) ÷ 64 g/mol.
m(S) = 13 t = 13000 kg; mass of sulfur.
Answer: The mass of sulfur produced is [tex]1.305\times 10^{-4}tons[/tex]
Explanation:
We are given:
Mass of sulfur dioxide = 26 million tons = [tex]235.872\times 10^{11}g[/tex] (Conversion factor: [tex]\text{1 million ton}=9.072\times 10^{11}g[/tex] )
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] .....(1)
Given mass of sulfur dioxide = [tex]235.872\times 10^{11}g[/tex]
Molar mass of sulfur dioxide = 64 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of sulfur dioxide}=\frac{235.872\times 10^{11}g}{64g/mol}=3.70\times 10^{11}mol[/tex]
For the given chemical equation:
[tex]S(s)+O_2(g)\rightarrow SO_2(g)[/tex]
By Stoichiometry of the reaction:
1 mole of sulfur dioxide is produced by 1 mole of Sulfur.
So, [tex]3.70\times 10^{11}[/tex] moles of sulfur dioxide will be produced by = [tex]\frac{1}{1}\times 3.70\times 10^{11}=3.70\times 10^{11}[/tex] moles of sulfur.
Calculating the mass of sulfur by using equation 1, we get:
Molar mass of sulfur = 32 g/mol
Moles of sulfur = [tex]3.70\times 10^{11}mol[/tex]
Putting values in equation 1, we get:
[tex]3.70\times 10^{11}mol=\frac{\text{Mass of sulfur}}{32g/mol}\\\\\text{Mass of sulfur}=(32g/mol\times 3.70\times 10^{11}mol)=118.4\times 10^{11}g[/tex]
Converting this into tons, we use the conversion factor:
1 ton = 907185 grams
So, [tex]118.4\times 10^{11}g\times \frac{1ton}{907185g}=1.305\times 10^{-4}tons[/tex]
Hence, the mass of sulfur produced is [tex]1.305\times 10^{-4}tons[/tex]