Respuesta :

we have

[tex]y=7x^{2}-10[/tex]

To find the inverse

Step 1

Exchanges the variables, x for y and y for x

[tex]x=7y^{2}-10[/tex]

Step 2

Isolate the variable y

[tex]x=7y^{2}-10[/tex]

[tex]7y^{2}=x+10[/tex]

[tex]y^{2}= \frac{x+10}{7}[/tex]

Square Root both sides

[tex]y=(+/-)\sqrt{\frac{x+10}{7}}[/tex]

Step 3

Let

[tex]f(x)^{-1}=y[/tex]

so

[tex]f(x)^{-1}=(+/-)\sqrt{\frac{x+10}{7}}[/tex]

therefore

the answer is

The inverse is  

[tex]f(x)^{-1}=(+/-)\sqrt{\frac{x+10}{7}}[/tex]

Answer:

It's B

Step-by-step explanation:

On Edge 2021